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ABSTRACT 

We develop a beam-hardening correction method for polychromatic x­
ray computed tomography (er) reconstruction based on mass attenua­

tion coefficient discretization. We assume that the inspected object con­
sists of an unknown single material and that the incident x -ray spectrum 
is unknown. In this case, the standard photon-energy discretization of 
the Beer's law measurement equation leads to an excessive number of 
unknown parameters and scaling ambiguity. To obtain a parsimonious 
measurement model parametrization, we first rewrite the measurement 
equation in terms of integral expressions of the mass attenuation rather 
than photon energy. The resulting integrals can be discretized easily 
thanks to the fact that the range of mass attenuations is bounded and, in 
practice, fairly narrow. We then develop a constrained least-squares op­
timization approach for reconstructing the underlying object from log­
scale measurements, where we impose the nonnegativity constraint to 
both the signal and the x-ray spectrum density estimates. We demon­
strate the performance of the proposed method via a numerical example 
where we compare it with the standard filtered backprojection (FBr), 
which ignores the polychromatic nature of the measurements. 

Index Terms- Beam hardening, computed tomography, signal re­
construction, x-ray tomography. 

1. INTRODUCTION 

Due to the bremsstrahlung phenomenon [1], x-rays generated by vac­
uum tubes are not monochromatic [2, 3], which causes the beam hard­
ening effect. To describe a polychromatic x-ray source, assume that its 
incident energy Tn spreads along photon energy E following the density 
�(E), i.e., 

! �(E)dE=Im. ( la) 

According to the Beer's law, the noiseless measurement collected by 
an energy integral detector upon traversing a straight line £. = £. (x, y) 
through a single-material object is [4-6] 

where a (x,y) is the inspected object's density, (x,y) are the Carte­
sian coordinates, and f-L(E) is the mass attenuation coefficient of the 
material, which depends on the photon energy E. 

A standard approach to simulate the polychromatic x -ray computed 
tomography (er) measurements is to discretize ( la) and (1 b) by approx­
imating the corresponding integrals over photon energy with summa-
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tions [3, Sec. 8.4]: 

J 
Iin = 2:>(Ej)6Ej 

j=1 
J 

rut = L�(Ej)e-<t>T"'I-'(€j)6Ej 
j=1 

(2a) 

(2b) 

where Eo < El < E2 < ... < EJ are the known discretization points 
along the E axis and 6E j = E j - E j -1 is the length of the interval be­
tween E j and E j -1 , a is a p x 1 vector representing the two-dimensional 
image that we wish to reconstruct, and 4> is a p x 1 vector of weights 
quantifying how much each element of a contributes to the x-ray at­
tenuation on the straight-line path £.. 

The discretization (2) has been employed in beam-hardening cor­
rection schemes [5-10]. Van Gompel et al. [10] consider a "blind " sce­
nario with unknown incident spectrum and materials, but assume that 
the number of materials is known and that each pixel is occupied by 
a single material; they employ the K -means clustering method to ini­
tially associate pixels to the materials and then alternate between mate­
rial segmentation and updating the relative density map, incident x-ray 
spectrum, and mass attenuation coefficients for each material. 

In the blind scenario when both f-L(E) and a (x,y) are unknown, 
their product suffers from scaling ambiguity, the number of unknown 
parameters that need to be estimated is excessive, and the sequence 
{(f-L( E j), �(E j )) J of discretized f-L( E) and �(E) can be permuted arbitrar­
ily, where {E j } j=1 are the discretization points over photon energy. In 
this paper, we discretize the Beer's law over the mass attenuation, which 
leads to fewer estimation parameters, and employ it to design a beam 
hardening correction scheme for the blind scenario. 

We introduce the notation: IN x 1 and 0 N x 1 the N x 1 vector of 
ones and zeros, "0" denotes the elementwise (Hadamard) product, and 
1·1, 11·112, and "T" are the absolute value, Euclidean norm, and transpose, 
respectively. Furthermore, (x)+ = max {x, O} is the positive-part op­
erator, supp( �(.)) returns the support set of a function c(·), y � ON x 1 
denotes that all elements of a real-valued N x 1 vector yare nonneg­
ative, I x l is the smallest integer larger than or equal to x, and 

llA (y) = {I, YEA, 
0, otherwise 

(3) 

denotes the indicator function. Define the elementwise logarithm, 
kth power, and positive-part operators of an N-dimensional real 
vector x = IX1, ... ,XN)T as lno (x) = [ In XI, ... , InxN]T, 
xok = [X�,X2"" ,x�] , and (x)+ = [ (Xl)+, ... , (XN)+]T, 
respectively. 
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2. X-RAY CT MODEL VIA MASS ATTENUATION 

Assume that the inspected single material is unknown and, conse­
quently, /1>( 10) is an unknown function as well. To reduce the number of 
parameters that we need to estimate, we re-parametrize our measure­
ment model and represent it in terms of integral expressions of /1> rather 
than 10. 

Observe that the mass attenuation /1>(10) and incident energy density 
(( 10) are both functions of 10, see Fig. 1. Thus, to combine the variation 
of these two functions and reduce the degree of freedom, we rewrite 
(( 10) as a function of /1> and set /1> as the integral variable. For invertible 
/1>( 10), we define its inverse as 10(/1». The change of variables 10 = 10(/1» 
in the integral expressions (1a) and (1 b) yields 

r = / �(€(/1») 110'(/1»1 d/1> (4a) 

rut = / ((10(/1») 1€'(/1»le-I'Ja(x,y)dfd/1> (4b) 

where we have also assumed that the function 10(/1» is differentiable 
with derivative 10'(/1» = d€(/1»/ d/1>. For invertible /1>(10), 10(/1» is a 
decreasing function of /1>; hence, 110' (/1» I = -10' (/1». 

All /1>(10) encountered in practice can be divided into piecewise­
continuous segments, where each segment is a differentiable monotoni­
cally decreasing function of 10 [4, Tables 3 and 4] and [11, Sec. 2.3]. The 
points of discontinuity in /1>( 10) are referred to as K -edges and are caused 
by the interaction between photons and K shell electrons. A K -edge 
occurs only when 10 reaches the binding energy of the shell electron.) 
An extension of (4) to this scenario is straightforward, but results in a 
lengthy expression. 

2.1. Discretization over Mass Attenuation 

We discretize (4a) and (4b) in the spatial and mass attenuation domains 
using p pixels and J mass attenuation bins: 

where 

J 
Iln = LIj 

j=l 
J 

rU'(f}) = LIj e-l'j¢7a 
j=1 

f} = (a,I) 
I = [I1,I2, • • •  ,IJ]T 

(5a) 

(5b) 

(6a) 
(6b) 

/1>0 < /1>1 < ... < /1>J are known discretization points along the /1> 
axis, 

(7a) 
and !3./1>j = /1>j -/1>j-1 is the length of the interval between consecutive 
discretization points /1>j and /1>j-l. By substituting €(/1>j) €j and 
110' (/1>j) I � !3.€ j / !3./1>j into (7a), we obtain 

(7b) 

(depicted in Fig. 1) and verify the equivalence between (2a)-(2b) and 
(5a)-(5b). Note that (5) holds for piecewise-monotonic /1>(10) as well, 
with a more complex expression for Ij that generalizes (7a). 

For the same number of discretization bins J, the standard photon­
energy and proposed mass attenuation coefficient (MAC) discretizations 
yield p + 2J and p + J parameters, respectively. Intuitively, the num­
ber of functions to infer is reduced from two, /1>(10) and �(€) (photon­
energy), to one, �(/1» (MAC). The MAC discretization is further facili­
tated by the following facts: 

a'���----------�€ 
((10) 

a 

Fig. 1: The mass attenuation coefficient and incident spectrum as func­
tions of the photon energy 10. 

• the mass attenuation coefficients /1> of almost all materials at any 
energy level are within the range 10-2 cm2/g to 104 cm2/g, see 
[4, Table 3]; 

• to reduce the beam hardening effect, the energy level of an x­
ray scan is usually selected so that the function /1>(10) is as flat as 
possible, yielding a narrow range of feasible values of /1> that is 
easy to discretize. 

The chosen discretization points {/1>j }f=l need to have a suffi­
ciently wide range to cover /1>( supp( �(€))); we select them using the 
geometric sequence with common ratio q: 

j = 1,2,00.,J. (8) 

We now discuss the identifiability issues exhibited by the proposed 
MAC discretization. Clearly, the value of /1>0 in (8) can be arbitrary, 
since /1>0 can be absorbed by a without affecting the value of rut, see 
also (5). If II = 0, 

rut ((a, [I1 ,I2, ... IJf)) == rut ((aq, [I2,I3, ... IJ,of)) 
(9a) 

Similarly, if IJ = 0, then 

rut ((a, [I1,I2, • . .  IJ]T)) == rut ((a/q, [0,I1,I2, • . .  IJ-1f)) 
(9b) 

Hence, if the range of {/1>j }f=l is sufficiently large to allow for zero 
edge elements of I, then the recovery of a will be correct up to a scale 
of common ratio q. See also Section 3 for further discussion on the 
selection of {/1>j } f=l and parameter identifiability. 

2.2. Measurement Model and Estimation Algorithm 

An x-ray CT scan consists of multiple projections with the beam inten­
sity measured by multiple detectors. The vector of noiseless measure­
ments at N detectors is A( a) I [see (5)], where the (i, j)th element of 
the N x J matrix A(a) is 

(10) 

and if> = [ <p(1)' <P(2)' . . .  , <p(N)f is the Radon transform matrix of 
size N x p for our imaging system. 

We assume that the shadow of the inspected object is completely 
covered by the receiver array and wish to estimate the image a from 
noisy measurements {Iiea} �1' corresponding to {IfU!} �1' We im­
pose the constraint on the incident energy Tn: 

J 
Iin = LIj ::; I�nAX' (11) 

j=l 
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A simple possible choice for the upper bound in (11) is 

(12) 

where the maximum is likely achieved at a detector i that has a line-of­
sight view of the x -ray source. The vector of unknown parameters is 8 
in (6a), and the corresponding parameter space 

E> = {(a , I) I a � 0, ITI � I:�Ax>I � o} (13) 

incorporates (11) and the facts that L (E) and a (x, y) are non-negative 
for all E, x and y. 

We adopt the following log-scale measurement model: 

z = f(8) + n = -lno[A(a)I] + n 

where 

z = [-lnI�c" , -lnI;c" , . . .  , _lnI�Ca ]T 
n =  [nl , n2 , . . .  , nN ]T 

(14a) 

(14b) 
(14c) 

are the log-scale measurement and noise vectors, respectively. Assum­
ing that n is additive white Gaussian noise leads to the least-squares 
(LS) optimization problem: minOEEl liz - f(8) 11;. A similar LS cri­
terion has been used in [10], which, however, employs the standard dis­
cretization over photon energy and therefore estimates the mass atten­
uations {;;,( E j)} f=1 in addition to 8. For known a, (14a) corresponds 
to a generalized linear model for inference on I with the Gaussian like­
lihood function and exponential link function e-z [12, Sec. 2.2]. To 
leave some margin for the noise and discretization effects, we relax the 
nonnegative signal constraint a � 0 and propose the following penal­
ized LS objective function: 

1 2 V 2 L",t( 8) = 211z - f( 8) 112 + 211 (-a) + 112 + t 7] (I) (15a) 

to be minimized with respect to 8, where v and t are scalar tuning con­
stants and the constraints on I in (13) are imposed via the logarithmic 
barrier function [13, Sec. 11.2] 

7](I) = -l�Xl lno(I) - In(I�nAx - l�XII) . (15b) 

Minimization Algorithm. Define the gradient vectors 90t ,,(8), 
9z,t(8) and Hessian matrices HOt,,,(8), Hz,t(8) of the obJective 
function (15a) with respect to a and I , respectively. (Here, the 
subscripts v and t emphasize the dependence on the tuning constant.) 

We descend (15a) by alternating between (i) and (ii): 
(i) the nonlinear conjugate-gradient step for a [14, Sec. 14.1] 

where 

(ii) • if 

T (i) (i) (HI) _ (i) _ 
9Ot,,,(8 )d 

d(i) a - a SOt d(i)T H (8(i»)d(i) Ot," 

-(i) INXI - Z + f(8 ) � ONXI 
holds, apply the Newton step for I 

I(Hl) = I(i) _ Sz [Hz,ljj(i») ] -
1 
9Z,t (e(i») 

where 

(16a) 

(16b) 

(16c) 

(16d) 

(17a) 

(17b) 

(17c) 

102 .,----------= 0.3 
-- /L(OO) 

---«00) 
0.2 

0.1 

LL...-,---,-""""':::"""'...-J..----L----"I O 
40 60 80 100120140160 

OO/keV 
(a) (b) 

Fig. 2: (a) Original binary image of size 10242 and (b) mass attenuation 
coefficient of iron (Z=26) and the incident x-ray spectrum density as 
functions of the photon energy. 

• otherwise, i.e., if (17a) does not hold, simply let 

I(Hl) = I(i). (17d) 

Here, 0 < SOt, Sz � 1 are the step sizes determined via backtrack­
ing [15, Sec. 9.7] to guarantee the descent of (15a) and i denotes the 
iteration index. 

In the nonlinear conjugate gradient step (16), we employ the Polak­
Ribiere formula (16c), which restarts the conjugate gradient iteration 
by forgetting the past search directions when 9� ,,(8(i»)e(i) is nega­
tive [16] to keep a from going uphill. Since H�,1/(8) has the form 
<I>TW( 8) <I> + v diag {:o.( -00,0) (a)}, where W( 8) is an N x N di­
agonal matrix, the denominator in (16a) is computed efficiently by com­
puting and storing <I>d(i). 

The Hessian of the LS cost liz - f(8) 11�, 

AT(a) diag{ [lNXl - z + f(8)] 0 [A(a)Ir-2}A(a) 

is positive definite and liz - f(8)11�, as well as (15a), is a convex 
function of I, if INxl - z + f(8) � ONxl, justifying the condition 
(17a) in (ii) above. 

We decrease the value oft at each instance where III(Hl) _I(i) II� 
is sufficiently small until smaller than E/(J + 1), where E determines 
the convergence accuracy (see [13, Sec. 11.2]). This strategy is called 
the barrier (or path-following) method [13, Sec. 11.3]. 

3. NUMERICAL EXAMPLE 

3.1. Simulated Beam Hardening Correction 

We construct a simulation example based on a binary 1024 x 1024 
image in Fig. 2(a) that corresponds to a real x -ray CT reconstruction 
of a metal casting, obtained by thresholding the pixel values of a re­
construction in [17, Fig. 5(b)]. The inspected object, assumed to be 
made of iron, contains irregularly shaped inclusions. We assume that 
the x -ray signal does not attenuate as it passes through the inclusions. 
The functional dependence of the mass attenuation coefficients on the 
photon energy for iron has been obtained by spline interpolation of the 
corresponding measurements from the National Institute of Standards 
and Technology (NIST) database [4]. The spectrum L (E) of the inci­
dent x-ray is modeled as a scaled and shifted Gamma(5, 1) probability 
density function (pdf) in range from 20 keV to 150 keV: 

( 4 (E - 20) ) L (E) = Gamma 
25 15, 1  :0.[20,1501 (E) (18) 
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(a) (b) 

Fig. 3: (a) The FBI' and (b) MAC reconstructions. 
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Fig.4: (a) The 500-th and (b) 700-th row profiles of the true image and 
FBI' and MAC reconstructions. 

see Fig. 2(b) and [18, Sec. 3.3] for the definition of Gamma(xla, (3). 
We simulated the polychromatic sinogram measurements using the con­
ventional photon-energy discretization (2) with 130 equi-spaced dis­
cretization points over the range 20 keY to 150 keY that approximates 
well the support of � (€) , see Fig. 2(b). The Radon transform matrix 
P and its transpose pT are constructed using nonuniform Fast Fourier 
Transform (NU FFT) [19] with the full circular mask [20], see also [2, 
Sec. 3.3] which describes the construction of the Radon transform and 
adjoint operators. 

We compare the standard filtered backprojection (FBI') method us­
ing the ramp filter [21, Sec. 3.4.7] (applied to the log-scale measure­
ments, as is done in practice [2, Sec. 4.1]) and the proposed recon­
struction obtained upon convergence of the iteration (16)-(17) (labeled 
MAC), respectively. 

We initialize the MAC iteration with the FBI' reconstruction iiPBI': 
oJO) = iiFBI' and denote by ae+oo) the MAC reconstruction obtained 
after 10000 iterations. Simultaneosly multiplying the reconstruction a 
by q or 1/ q and shifting the entries of the corresponding energy pa­
rameter vectors Z by one element to the left or right, respectively, will 
lead to the same response function f(O), see (9). To ensure that the 
main lobe of the final energy parameter vector estimate Ze+oo) in its 
center, we set all but one element of the initial Z(O) to zero and se­
lect the nonzero element in the middle: If�j21 = 1; consequently, 
f(Oeo» = pa(O) J.lfJ/21' As discussed in Section 2.1, the value of J.lo 
can be arbitrary and we select it so that J.lr J /21 = 1 and thus our initial 
response function f (Oeo» = pa(O) = piim is identical to that of 
the standard FBI' reconstruction. We selected J = 17 discretization 
points {J.lj} f=l spanning the range J.lJ / J.l1 = 103 using (8) with the 

X103 
14��----------------, rX�1�0�

3 
__________________ , 

25 r 

12 
20 

10 

8 15 

6 10 
4 
2 

O L-,---

5 

�l.0 -0.5 0 0.5 -0.4 -0.2 
Residual 
(a) 

0.4 
Residual 
(b) 

l.0 
xlO-3 

Fig. 5: The residual histograms from (a) the FBP and (b) MAC recon­
structions. 

common ratioq = (J.lJ/J.l1) 1/(J-l). Since the range of 'true' J.lused 
to generate the sinogram is from 0.19 cm2/g to 26 cm2/g [see Fig. 2(b)], 
our selection J.lJ / J.l1 = 103 is sufficiently wide to cover the range of 
significant J.lS. Further, we choose TMnAX according to (12), let 1/ = 1 
and decrease value of t from 1 as well. 

Figs. 3(a) and 3(b) show the standard FBI' and MAC reconstruc­
tions, respectively. Since FBP does not account for the beam harden­
ing effect, its reconstruction exhibits the cupping and streaking artifacts 
commonly associated with the beam-hardening phenomenon [22]: the 
FBI' reconstruction in Fig. 3(a) shows decreasing material density to­
wards the center of the inspected object and existence of nonzero object 
density in the 'bay area' of the object where the true density is zero. 

Figs. 4(a) and 4(b) show the 500th and 700th rows of the true im­
age in Fig. 2(a) and the FBI' and MAC reconstructions. Note that the 
500th and 700th rows cut through the 'bay area' and the region with 
inclusions, respectively. Recall that the MAC reconstructions can be 
determined only up to a scaling factor, which explains the mismatch 
between the MAC reconstructed and true high-signal levels in Fig. 4. 

Figs. 5(a) and 5(b) show the histograms of the residuals z - piim 
and z - f(Oe+oo» for the FBI' and MAC reconstructions. In Fig. 5(a), 
the peaks in the histogram around zero with a valley in between, which 
indicates the disagreement between the linear monochromatic measure­
ment model employed by FBI' and the measurements. In contrast, the 
histogram in Fig. 5(b) is symmetric around zero and close to the Gaus­
sian distribution. 

4. CONCLUSION 

Further research will include 
• developing a sparse signal reconstruction method based on the 

proposed beam-hardening correction scheme [e.g., by adding a 
sparsifying penalty term to the objective function (15a) or by 
adding a hard-thresholding step to the iteration step (i) in (16), 
along the lines of [23]] and demonstrating that imposing signal 
sparsity and other signal constraints (e.g., the geometric shape of 
the inspected object) will have a denoising effect on the recon­
structed signals, allowing us to handle limited-angle projections 
or significantly undersampled measurements; 

• iteratively refining the selection of the mass attenuation dis­
cretization points based on the obtained estimates of the incident 
energy density parameters Z; 

• generalizing the proposed MAC discretization to handle multiple 
materials. 

1088 



References 

[1] Bremsstrahlung, accessed 27-November-2012. [Online]. Avail­
able: http://en.wikipedia.org/wiki/Bremsstrahlung. 

[2] A. C. Kak and M. Slaney, Principles o/Computerized Tomo­

graphic Imaging. New York: IEEE Press, 1988. 
[3] J. Hsieh, Computed Tomography: Principles, Design, Artifacts, 

and Recent Advances, 2nd ed. Bellingham, WA: SPIE, 2009. 
[4] J. H. Hubbell and S. M. Seltzer, ''Tables of X-ray mass at­

tenuation coefficients and mass energy-absorption coefficients 
1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional 
substances of dosimetric interest, " National Inst. Standards and 
Technology, Ionizing Radiation Div., Gaithersburg, MD, Tech. 
Rep. NISTIR 5632, 1995. 

[5] I. A. Elbakri and J. A. Fessler, "Statistical image reconstruction 
for polyenergetic X-ray computed tomography, " IEEE Trans. 

Med.lmag., vol. 21, no. 2, pp. 89-99, 2002. 
[6] l. A. Elbakri and J. A. Fessler, "Segmentation-free statistical im­

age reconstruction for polyenergetic X-ray computed tomogra­
phy with experimental validation, " Phys. Med. Bioi., vol. 48, no. 
15, pp. 2453-2477, 2003. 

[7] B. De Man, J. Nuyts, P. Dupont, G. Marchal, and P. Suetens, 
"An iterative maximum-likelihood polychromatic algorithm for 
CT, " IEEE Trans. Med. Imag., vol. 20, no. 10, pp. 999-1008, 
2001. 

[8] J. Williamson, B. Whiting, J. Benac, R. Murphy, G. Blaine, J. 
O'Sullivan, D. Politte, and D. Snyder, "Prospects for quanti­
tative computed tomography imaging in the presence of for­
eign metal bodies using statistical image reconstruction, " Med. 

Phys., vol. 29, p. 2404, 2002. 
[9] J. A. O'Sullivan and J. Benac, "Alternating minimization algo­

rithms for transmission tomography, " IEEE Trans. Med.lmag., 

vol. 26, no. 3, pp. 283-297, Mar. 2007. 
[I 0] G. Van Gompel, K. Van Siambrouck, M. Defrise, K. Batenburg, 

J. de Mey, J. Sijbers, and J. Nuyts, "Iterative correction of beam 
hardening artifacts in CT , "  Med. Phys., vol. 38, S36-S49, 2011. 

[II] W. Huda,Review o/Radiologic Physics, 3rd ed. Baltimore, MD: 
Lippincott Williams & Wilkins, 2010. 

1089 

[I 2] P. McCullagh and J. Neider, Generalized Linear Models, 

2nd ed. New York: Chapman and Hall, 1989. 

[13] S. Boyd and L. Vandenberghe, Convex Optimization. New 
York: Cambridge University Press, 2004. 

[14] J. R. Shewchuk, "An introduction to the conjugate gradient 
method without the agonizing pain, " Carnegie Mellon Univ., 
Pittsburgh, PA, Tech. Rep. CMU-CS-94-125, 1994. [Online]. 
Available: http://www.cs.cmu.edu/-jrs/jrspapers.html. 

[I5] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. 
Flannery, Numerical Recipes: The Art 0/ Scientific Computing, 

3rd ed. New York: Cambridge University Press, 2007. 

[16] J. C. Gilbert and J. Nocedal, "Global convergence properties of 
conjugate gradient methods for optimization, " SIAM 1. Optim., 

voI. 2, no. l, pp. 21-42, 1992. 

[17] K. Qiu and A. Dogandzic, "Sparse signal reconstruction via 
ECME hard thresholding, " IEEE Trans. Signal Process., vol. 
60, pp. 4551-4569, Sep. 2012. 

[18] G. Casella and R. L. Berger, Statistical Inference, 2nd ed. Pa­
cific Grove, CA: Duxbury Press, 2002. 

[I 9] J. Fessler and B. Sutton, "Nonuniform fast Fourier transforms 
using min-max interpolation, " IEEE Trans. Signal Process., 

vol. 51, no. 2, pp. 560-574, Feb. 2003. 

[20] A. Dogandzic, R. Gu, and K. Qiu, "Mask iterative hard thresh­
olding algorithms for sparse image reconstruction of objects 
with known contour, " in Proc. Asilomar Coni. Signals, Syst. 

Comput., Pacific Grove, CA, Nov. 2011, pp. 2111-2116. 

[21] J. A. Fessler, "Analytical tomographic image reconstruction 
methods, " Nov. 2009, [Online]. Available: http : II web . eecs . 
umich .edu/ -fessler/book/c-tomo-prop .pdf. 

[22] J. Barrett and N. Keat, "Artifacts in CT recognition and avoid­
ance, " Radiographics, vol. 24, no. 6, pp. 1679-1691, 2004. 

[23] T. Blumensath, "Compressed sensing with nonlinear observa­
tions and related nonlinear optimisation problems, " May 2012. 
arXiv: 1205.1650 [cs. IT]. 


