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Background

(µ, α)

I in

Iout

According to the Lambert-Beer’s law [Jenkins and White 1957], the fraction dI/I of plane wave intensity
lost in traversing an infinitesimal thickness dℓ at Cartesian coordinates (x, y) is proportional to dℓ, so that

dI
I

= −µ(ε)α(x, y) dℓ.

where
▶ µ(ε) is the mass attenuation coefficient of the material (in cm2

g ),
which depends only on the photon energy ε,

▶ α(x, y) is the density map of the inspected object (in g
cm3 ).

Therefore, a monochromatic X-ray signal at photon energy ε attenuates
exponentially as it penetrates an object composed of a single material:

Iout = I in exp
[
−µ(ε)

∫
ℓ

α(x, y) dℓ
]
.

where Iout and I in are the emergent and incident X-ray signal energies, respectively.
However, X-rays generated by vacuum tubes are not monochromatic. To describe the polychromatic X-ray
source, assume that its incident intensity I in spreads along photon energy ε following the density ι(ε), i.e.,∫

ι(ε) dε = I in. (1a)

Then, the noiseless measurement collected by an energy integral detector upon traversing a straight line
ℓ = ℓ(x, y) is

Iout =

∫
ι(ε) exp

[
− µ(ε)

∫
ℓ

α(x, y) dℓ
]

dε. (1b)

Polychromatic X-ray CT Model via Mass Attenuation
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Figure 1: Mass attenuation and
incident spectrum as functions of
photon energy ε.

Assumption:
▶ Both incident spectrum ι(ε) and mass attenuation function µ(ε) of

the object are unknown.
Objective:

▶ Estimate the density map α(x, y).
Based on the fact that mass attenuation µ(ε) and incident spectrum
density ι(ε) are both functions of ε (see Fig. 1), our idea is to:

▶ write the model as integrals of µ rather than ε;
▶ estimate ι(µ) rather than ι(ε) and µ(ε).

For invertible µ(ε), define its inverse as ε(µ) and rewrite (1a) and (1b) as

I in =

∫
ι(µ) dµ, Iout =

∫
ι(µ) exp

[
−µ

∫
ℓ

α(x, y) dℓ
]

dµ (2)

where
ι(µ) ≜ ι(ε(µ))|ε′(µ)|

and ε(µ) is differentiable with derivative ε′(µ) = dε(µ)
dµ . Invertibility of µ(ε) is assumed for simplicity: easy

to extend (2) to arbitrary µ(ε).

Discretizations over Mass Attenuationp
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Figure 2: Discretization over
space:

∫
ℓ α(x, y) dℓ ≈ ϕTα.

Discretize (2) in the mass attenuation and spatial domains using J mass attenuation bins and p pixels:

I in =
J∑

j=1

Ij and Iout =
J∑

j=1

Ij e−µj ϕ
Tα (3)

where
▶ α is a p × 1 column vector representing the 2-D image α(x, y) that

we wish to reconstruct,
▶ ϕ is a p × 1 vector of weights quantifying how much each element of
α contributes to the X-ray attenuation on the straight-line path ℓ,

▶ µ0 < µ1 < · · · < µJ are known discretization points along the µ axis,
∆µj = µj − µj−1, and

▶ Ij = ι(µj)∆µj ≈ ι(εj)∆εj.
The mass attenuation coefficient (MAC) discretization is facilitated by the following facts:
▶ µ of almost all materials at any energy level are within the range 10−2 cm2/g to 104 cm2/g,
▶ the energy level of an X-ray scan is usually selected so that the function µ(ε) is as flat as possible.

Choose discretization points {µj}J
j=1 with a sufficiently wide range to cover µ(supp(ι(ε))):

µj = µ0qj, j = 1, 2, . . . , J. (4)
Identifiability:
▶ The value of µ0 in (4) can be arbitrary,
▶ if I1 = 0, Iout ((α, [I1, I2, . . . IJ]

T)) ≡ Iout ((αq, [I2, I3, . . . IJ, 0]
T)),

▶ if IJ = 0, Iout ((α, [I1, I2, . . . IJ]
T)) ≡ Iout ((α/q, [0, I1, I2, . . . IJ−1]

T)).
Hence, if the range of {µj}J

j=1 is sufficiently large to allow for zero edge elements of I , then the recovery
of α will be correct up to a scale of common ratio q.

Measurement Model, Assumptions, and Constraints

Figure 3: Projections at angles θ1 and θ2.

An X-ray CT scan consists of multiple projections with the beam intensity measured by multiple detectors,
see Fig. 3. Model a vector z of N log-scale noisy measurements as

z = f(θ) + n = −ln◦[A(α)I] + n
where ln◦(x) denotes elementwise logarithm,

▶ I = [I1, I2, . . . , IJ]
T,

▶
[
A(α)

]
i,j = exp(−ΦT

(i)αµj),
▶ Φ = [Φ(1)Φ(2) · · ·Φ(N)]

T is the Radon transform matrix for our
imaging system, and

▶ n is additive white Gaussian noise.
Our goal: estimate the image and incident energy density parameters

θ =
(
α,I

)
.

Assumptions:
▶ Object’s shadow covered by the receiver array;
▶ Known upper bound I in

MAX on incident energy I in: I in =
∑J

j=1 Ij = 1TI ≤ I in
MAX;

▶ ι(µ) and α(x, y) are nonnegative for all ε, x and y: I ⪰ 0 and α ⪰ 0.
Notation: y ⪰ 0 denotes that all elements of a vector y are nonnegative.

Parameter Estimationp
To leave some margin for the noise and discretization effects, we relax the nonnegative signal constraint
α ⪰ 0 and propose the following penalized least-squares (LS) objective function:

Lν,t(θ) =
1

2
∥z − f(θ)∥22 +

ν

2
∥(−α)+∥22 + t

[
− 1T

J×1 ln◦(I)− ln
(
I in

MAX − 1T
J×1I

)]
(5)

energy of negative pixels log barrier penalty
where ν and t are scalar tuning constants for the signal nonnegativity and sparsity penalty terms.
Notation: (x)+ keeps positive elements of x intact and sets the rest to zero.
Minimization Algorithm: Define the gradient vectors gα,ν(θ), gI,t(θ) and Hessian matrices Hα,ν(θ),
HI,t(θ) of the objective function (5) with respect to α and I , respectively. Descend (5) by alternating
between (i) and (ii):

(i) the Polak-Ribière nonlinear conjugate-gradient
step for α [Shewchuk 1994, Sec. 14.1] where I
is fixed and set to I(i);

α(i+1) = α(i) − sα
gT
α,ν(θ

(i))d(i)

d(i)THα,ν(θ
(i))d(i)d

(i)

where
e(i) = gα,ν(θ

(i))− gα,ν(θ
(i−1))

β(i) = max
{
0,

gT
α,ν(θ

(i))e(i)

∥gα,ν(θ
(i−1))∥22

}
d(i) = gα,ν(θ

(i)) + β(i)d(i−1);

(ii) ▶ if
1N×1 − z + f

(
θ̃
(i))

⪰ 0N×1 (6)
holds, apply the Newton step for I :

I(i+1) = I(i) − sI
[
HI,t(θ̃

(i)
)
]−1

gI,t
(
θ̃
(i))

where
θ̃
(i)

= (α(i+1),I(i));

▶ otherwise, i.e., if (6) does not hold, keep
the old I :

I(i+1) = I(i).

Note: (6) ensures HI,t(θ̃
(i)
) ≥ 0.

Numerical Example
Simulation example based on a binary 1024× 1024 image in Fig. 5a obtained by thresholding the pixel values
of a reconstruction in [Qiu and Dogandžić 2012, Fig. 5(b)].

▶ Inspected object, assumed to be made of iron, contains irregularly shaped inclusions; mass-attenuation
function µ(ϵ) for iron extracted from the NIST database.

▶ Polychromatic sinogram simulated using photon-energy discretization with 130 equi-spaced discretization
points over the range 20 keV to 150 keV that approximates well the support of ι(ε).
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Figure 4: Simulated mass attenuation
and incident X-ray spectrum as
functions of the photon energy ε.

▶ 1024-element measurement array employed.
▶ Radon transform Φ constructed using nonuniform fast Fourier

transform (NUFFT) with full circular mask [Dogandžić et al. 2011].
▶ 180 equi-spaced parallel-beam projections with 1° spacing.
▶ Performance metric is the relative square error (RSE) of an estimate
α̂ of the signal coefficient vector:

RSE{α̂} = 1−
(

α̂Tα

∥α̂∥2∥α∥2

)2

.

We compare
▶ the traditional filtered backprojection (FBP) method, and
▶ our MAC reconstruction upon convergence of the iteration (i)–(ii).

Figs. 5f and 5g show the histograms of the residuals z − Φα̂FBP and z − f(θ(+∞)).
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(d) The 500th row profile
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(e) The 700th row profile
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Figure 5: (a)–(c) The true image and FBP and MAC reconstructions, (d)–(e) corresponding 500th and 700th row profiles, and
(f)–(g) residual histograms from the FBP and MAC reconstructions.

Future Workp

▶ Generalize the proposed MAC discretization to handle multiple materials,
▶ Incorporate signal sparsity and develop an active set approach for estimating incident energy density

parameters I [Gu and Dogandžić 2013],
▶ Iteratively refine the selection of the mass attenuation discretization points {µj}J

j=1 based on the obtained
estimates of I .
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