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Background

According to the Lambert-Beer's law [Jenkins and White 1957], the fraction dZ/Z of plane wave intensity
lost in traversing an infinitesimal thickness d¢ at Cartesian coordinates (z, y) is proportional to d/, so that

- = —hle)alz y)dL. e
where _ )
> p(e) is the mass attenuation coefficient of the material (in <),
which depends only on the photon energy ¢,
» a(x, y) is the density map of the inspected object (in %)

Therefore, a monochromatic X-ray signal at photon energy ¢ attenuates
exponentially as it penetrates an object composed of a single material:

T = T exp [—u(s) /Zoz(as, Y) dé}.

where Z°t and Z'™ are the emergent and incident X-ray signal energies, respectively.

However, X-rays generated by vacuum tubes are not monochromatic. To describe the polychromatic X-ray
source, assume that its incident intensity Z™ spreads along photon energy ¢ following the density «(¢), i.e.,

/L(€) de = T". (1a)

Then, the noiseless measurement collected by an energy integral detector upon traversing a straight line
0 ={(z,y) is
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T = /L(s) exp [— (e) /goz(x, Y) df} de. (1b)

Polychromatic X-ray CT Model via Mass Attenuation

Assumption:

» Both incident spectrum «(¢) and mass attenuation function p(e) of
the object are unknown.

Objective:
» Estimate the density map a(z, y).

Based on the fact that mass attenuation (¢) and incident spectrum
density «(g) are both functions of ¢ (see Fig. 1), our idea is to:

» write the model as integrals of p rather than ¢;
» estimate L(u) rather than «(e) and u(e).
For invertible ju(¢), define its inverse as () and rewrite (1a) and (1b) as
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Figure 1. Mass attenuation and
incident spectrum as functions of
photon energy ¢.

Wn) £ ue())le (1)l
and (u) is differentiable with derivative &'(u) = dzg‘). Invertibility of u(e) is assumed for simplicity: easy
to extend (2) to arbitrary p(e).

Discretizations over Mass Attenuation

Discretize (2) in the mass attenuation and spatial domains using J mass attenuation bins and p pixels:
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where ASK\-—’ ¢z
» v is a p X 1 column vector representing the 2-D image a(z, y) that p=d
we wish to reconstruct, £

» ¢ is a p x 1 vector of weights quantifying how much each element of
a contributes to the X-ray attenuation on the straight-line path /7,

> o < 1 < --- < pyare known discretization points along the p axis,
Apj= pj— pj-1, and
> I = W) Apy = 1(g))Ae;
The mass attenuation coefficient (MAC) discretization is facilitated by the following facts:
» 4 of almost all materials at any energy level are within the range 1072 cm?/g to 10* cm?/g,
» the energy level of an X-ray scan is usually selected so that the function u(e) is as flat as possible.

Choose discretization points {,uj}f:l with a sufficiently wide range to cover p(supp(c(¢))):

i=1,2.... . (4)

,ﬁ; X-ray path /¢
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Figure 2: Discretization over
space: [,a(z,y) dl ~ ¢ a.

Hj = pod,
Identifiability:
» The value of 1 in (4) can be arbitrary,
v if 7y = 0, T (e, [0, Do, . .. T 7)) = T ((@uq, (T2, T, . . . Ty, 0] 7)),
» if Z;=0, I° (o, [11, To, . . . ZJ) D)) = I ((a/ q, [0, T4, T, . . . 2y 1] 7).

Hence, if the range of {Nj}}']:1 is sufficiently large to allow for zero edge elements of Z, then the recovery
of a will be correct up to a scale of common ratio q.

Measurement Model, Assumptions, and Constraints

An X-ray CT scan consists of multiple projections with the beam intensity measured by multiple detectors,
see Fig. 3. Model a vector z of NV log-scale noisy measurements as

()
z=fl0)+n=—In,[A(0)Z] + n X-ray Source -
where In,(x) denotes elementwise logarithm, 46,3 A,
» T =10,1,,...,I)7, -
> [Ale)], = exp(=D (o), / D
QN
» O =[PPy - (ID(N)]T is the Radon transform matrix for our 9 v
imaging system, and S
» n is additive white Gaussian noise. g@
Our goal: estimate the image and incident energy density parameters &

0 — (Oz,I). Figure 3: Projections at angles #; and 05.
Assumptions:

» Object's shadow covered by the receiver array;
» Known upper bound Zii,y on incident energy Z": 7" = ijllj =11z <1"

MAX?

» () and «(x, y) are nonnegative for all ¢, zand y: Z = 0 and o > 0.
Notation: y >~ O denotes that all elements of a vector y are nonnegative.
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Parameter Estimation

To leave some margin for the noise and discretization effects, we relax the nonnegative signal constraint
o = 0 and propose the following penalized least-squares (LS) objective function:

1 v in
L0) = 51z = FO)3 + 2~ + 1 [~ 15 e(Z) ~In(2],, — 15,7 (5)

~
energy of negative pixels

.Y
log barrier penalty

where v and ¢ are scalar tuning constants for the signal nonnegativity and sparsity penalty terms.
Notation: (x), keeps positive elements of x intact and sets the rest to zero.

Minimization Algorithm: Define the gradient vectors g,, ,(6), gz (0) and Hessian matrices Hy ., (),
Hz 4(0) of the objective function (5) with respect to ac and Z , respectively. Descend (5) by alternating
between (i) and (ii):
(i) the Polak-Ribiére nonlinear conjugate-gradient
step for a [Shewchuk 1994, Sec. 14.1] where
is fixed and set to Z'7;

(ii) » if ()
1y« — Z+f(0 ) = Onx1 (6)
holds, apply the Newton step for Z:

T (940 . ,
i i ga,y(e )d i i i ~(i) 11 ~(4)
ot =l — d""H,,(0)d" d() I =10~ [H“(H )} 92.(6")
where h where (i)
el =g (0 — g (80Y) 0 = (o™ Tl
" ’ g7 (’O(i))e(i) > oﬁhermis% i.e., if (6) does not hold, keep
190.,(0 )13 ) =10,

d = g, ,(8) + 5O gD, Note: (6) ensures Hz(6"”) > 0.

Numerical Example

Simulation example based on a binary 1024 x 1024 image in Fig. 5a obtained by thresholding the pixel values
of a reconstruction in [Qiu and Dogandzi¢ 2012, Fig. 5(b)].

» Inspected object, assumed to be made of iron, contains irregularly shaped inclusions; mass-attenuation
function p(e) for iron extracted from the NIST database.

» Polychromatic sinogram simulated using photon-energy discretization with 130 equi-spaced discretization
points over the range 20 keV to 150 keV that approximates well the support of ¢(¢).

» 1024-element measurement array employed.

» Radon transform ® constructed using nonuniform fast Fourier -
transform (NUFFT) with full circular mask [Dogandzi¢ et al. 2011].  sejq1}

» 180 equi-spaced parallel-beam projections with 1° spacing. 5
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» Performance metric is the relative square error (RSE) of an estimate 210
a of the signal coefficient vector: :
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Figure 4. Simulated mass attenuation
and incident X-ray spectrum as
functions of the photon energy e.

We compare
» the traditional filtered backprojection (FBP) method, and
» our MAC reconstruction upon convergence of the iteration (i)—(ii).

Figs. 5f and 5g show the histograms of the residuals z — ®argp and z — f(0(+°°)).

RSE=6.89 % RSE=0.54 % [

14
12
2
0.8
0.6
0.4
0.2

(a) The ‘ground truth’ (c) MAC
3
EY =22 - 25 ?10
<} < = X
E i E i g 20 F
[&] B (] - - -
Bl A1 s -
ol 1 [a W 1 8 - 15 =
T}t T} 6F g
) + g 10 o
= 2 4F -
— — - |-
g 4;) 9 - 5 -
50 g0 g :
o 1 5] NS IS WA WA A 0 0
gqé 0 200 400 600 800 1000 rfé 0 200 400 600 &00 1000 -04-02 0 02 04 —-1.0 —-0.5 0 0.5 1.0
Pixel Position Pixel Position Residual Residual x10~3
(d) The 500th row profile (e) The 700th row profile (f) FBP (g) MAC

Figure 5: (a)—(c) The true image and FBP and MAC reconstructions, (d)—(e) corresponding 500th and 700th row profiles, and
(f)—(g) residual histograms from the FBP and MAC reconstructions.

» Generalize the proposed MAC discretization to handle multiple materials,

» Incorporate signal sparsity and develop an active set approach for estimating incident energy density
parameters Z [Gu and Dogandzi¢ 2013],

» Iteratively refine the selection of the mass attenuation discretization points {/Lj}le based on the obtained
estimates of Z.

References

[ Aleksandar Dogandzi¢, Renliang Gu, and Kun Qiu. “Mask iterative hard thresholding algorithms for
sparse image reconstruction of objects with known contour.” Froc. Asilomar Conf. Signals, Syst.
Comput. Pacific Grove, CA, Nov. 2011, pp. 2111-2116.

[ Renliang Gu and Aleksandar Dogandzi¢. Sparse signal reconstruction from polychromatic X-ray CT
measurements via mass attenuation coefficient discretization. Tech. rep. NSF/IU. Ames, |A: CNDE,
lowa State Univ., Mar. 2013.

Francis A Jenkins and Harvey E White. Fundamentals of Optics. 3rd ed. New York: McGraw-Hill, 1957.

Kun Qiu and Aleksandar Dogandzi¢. “Sparse signal reconstruction via ECME hard thresholding.” /EEE
Trans. Signal Process. 60 (Sept. 2012), pp. 4551-4569.

J. R. Shewchuk. An introduction to the conjugate gradient method without the agonizing pain.
Tech. rep. CMU-CS-94-125. Pittsburgh, PA: Carnegie Mellon Univ., 1994,

G. Van Gompel, K. Van Slambrouck, M. Defrise, K.J. Batenburg, J. de Mey, J. Sijbers, and J. Nuyts.
“Iterative correction of beam hardening artifacts in CT.” Med. Phys. 38 (2011), 536-549.

) B Y




	Background
	Measurement Model and Parameter Estimation

	Numerical Examples
	Simulated Beam Hardening Correction


