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Abstract. We develop a sparse image reconstruction method for polychromatic computed tomography (CT) measurements un-
der the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. To obtain a
parsimonious measurement model parameterization, we first rewrite the measurement equation using our mass-attenuation param-
eterization, which has the Laplace integral form. The unknown mass-attenuation spectrum is expanded into basis functions using a
B-spline basis of order one. We develop a block coordinate-descent algorithm for constrained minimization of a penalized negative
log-likelihood function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and sparsity of the
density map image in the wavelet domain. This algorithm alternates between a Nesterov’s proximal-gradient step for estimating
the density map image and an active-set step for estimating the incident spectrum parameters. Numerical simulations demonstrate
the performance of the proposed scheme.

BACKGROUND AND INTRODUCTION

X-ray computed tomography (CT) measurement systems are important in modern nondestructive evaluation (NDE)
and medical diagnostics. Therefore, improving reconstruction accuracy and speed of data collection in these systems
could have a significant impact on these broad areas. Thanks to recent computational and theoretical advances, such
as graphics processing units (GPUs) and sparse signal reconstruction theory and methods, it is now possible to design
iterative reconstruction methods that incorporate accurate nonlinear physical models into sparse signal reconstructions
from significantly undersampled measurements.
Due to the polychromatic nature of the X-ray source, linear reconstructions such as filtered backprojection (FBP) exhibit

beam hardening artifacts, e.g., cupping and streaking [1]: the FBP reconstruction in Fig. 1a shows decreasing material
density towards the center of the inspected object and existence of nonzero object density in the ‘bay area’ of the object
where the true density is zero. These artifacts limit the quantitative analysis of the reconstruction. In medical CT application,
severe artifacts can even look similar to certain pathologies and further mislead the diagnosis [2, Sec. 7.6.2]. Fulfilling the
promise of compressed sensing and sparse signal reconstruction in X-ray CT depends on accounting for the polychromatic
measurements as well. It is not clear how aliasing and beam hardening artifacts interact and our experience is that we
cannot achieve great undersampling when applying sparse linear reconstruction to polychromatic measurements. Indeed,
the error caused by the model mismatch may well be larger than the aliasing error that we wish to correct via sparse signal
reconstruction. Fig. 1b shows the reconstructed image by the mask double overrelaxation (mask DORE) method that is also
based on the linear measurement model, but with additional geometric object shape information incorporated, see [3] for
details and description of other geometric mask methods that employ the linear measurement model. (Here, we show mask
DORE for illustration: other mask approaches in [3] exhibit similar artifacts.) Generally, adding geometric information
will help the reconstruction. However, in Fig. 1b, the non-convex mask cuts into the convex hull of the object, and the
nonzero signal outside the object is pushed inside the mask, which results in energy accumulation along the mask border
and artifacts inside the object as well. Hence, to reap the benefits of signal sparsity and object contour information, we must
correct the beam hardening effect first by accounting for the polychromatic source model.
In this paper, we adopt the nonlinear measurement model resulting from the polychromatic X-ray source, and simplify

it by exploiting the relation between the mass attenuation coefficients, X-ray photon energy and incident spectrum, see
Fig. 1c. Based on this idea, the optimization problem formulated from the image reconstruction becomes feasible and gives
the estimation of the density map and the mass attenuation spectrum as the result.
We introduce the notation: IN , 1N �1, and 0N �1 are the identity matrix of size N and the N � 1 vectors of ones and

zeros (replaced by I;1, and 0 when the dimensions can be inferred easily); j�j, k�k2, ˝, and “T ” are the absolute value, `p

norm, Kronecker product, and transpose, respectively. Furthermore, bxc is the largest integer smaller than or equal to x,
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FIGURE 1. (a)–(b) FBP and mask DORE linear reconstructions from polychromatic X-ray CT measurements and (c) relation
between mass attenuation �, incident spectrum � and photon energy ".

“�” is the elementwise version of “�”, IC.˛/ is the nonnegativity indicator function:

IC.˛/ ,
(

0; ˛ � 0

C1; otherwise
(1)

and aL.s/ is the Laplace transform of a vector function a.�/: aL.s/ ,
R

a.�/e�s� d�. Note that .�a/L.s/ DR
�a.�/e�s� d�. Define also the elementwise logarithm lnı.x/ D Œlnx1; : : : ; lnxN �T , nonnegativity projector Œ.x/C�i D

maxfxi ;0g where x D Œx1;x2; : : : ;xN �T , and Laplace transforms aLı.s/ D

h
ŒaL.s1/�T ŒaL.s2/�T � � � ŒaL.sN /�T

iT

and .�a/Lı.s/ D

h
Œ.�a/L.s1/�T Œ.�a/L.s2/�T � � � Œ.�a/L.sN /�T

iT
where s D Œs1; s2; : : : ; sN �T .

In the following section, we review the noiseless polychromatic X-ray CT measurement model and our mass-attenuation
parameterization of this model.

POLYCHROMATIC X-RAY CT MODEL

To describe the polychromatic X-ray source, assume that its incident intensity I in spreads along photon energy "
following the density �."/ � 0, i.e., Z

�."/d" D I in: (2a)

see Fig. 1c, which shows a typical density �."/. The noiseless measurement collected by an energy integral detector upon
traversing a straight line ` D `.x;y/ has the familiar superposition-integral form:

Iout D

Z
�."/exp

�
�

Z
`

�.x;y;"/d`

�
d" D

Z
�."/exp

�
��."/

Z
`

˛.x;y/d`

�
d" (2b)

where we model the attenuation �.x;y;"/ of the inspected object consisting of a single material using the following
separable form [4, Sec. 6]:

�.x;y;"/ D �."/˛.x;y/: (3)
Here, �."/ is the mass attenuation coefficient of the material, a function of the photon energy " (illustrated in Fig. 1c) and
˛.x;y/ is the density map of the object. For a monochromatic source at photon energy ", lnŒI in."/=Iout."/� is a linear
function of ˛.x;y/, which is a basis for traditional linear reconstruction. However, X-rays generated by vacuum tubes are
not monochromatic [2, 5] and we cannot transform the underlying noiseless measurements to a linear model unless we
know perfectly the incident energy spectrum �."/ and mass attenuation of the inspected material �."/.

Mass Attenuation Parameterization

We now review our parsimonious parameterization of (2b) for signal reconstruction [6, 7]. Since the mass attenuation
�."/ and incident spectrum density �."/ are both functions of " (see Fig. 1c), we combine the variations of these two



functions and write (2a) and (2b) as integrals of � rather than ", with goal to represent our model using two functions ι.�/
(defined below) and ˛.x;y/ instead of three [�."/;�."/, and ˛.x;y/], see also [6]. Hence, we express (2a) and (2b) as

I in D ιL.0/; Iout
D ιL

�Z
`

˛.x;y/d`

�
(4)

where ιL.s/ is the Laplace transform of ι.�/. Here, s > 0, in contrast with the traditional Laplace transform where s is
generally complex and ι.�/ represents the density of the incident X-ray energy at attenuation �; we refer to it as incident
mass attenuation spectrum. The mass attenuation spectrum depends both on the measurement system (through the incident
energy spectrum) and inspected object (through the mass attenuation of the inspected material). As shown in Fig. 1c, with
respect to this particular material described by the mass attenuation curve, the area �."j /�"j depicting the X-ray energy
within the �"j slot is the same as the corresponding area ι.�j /��j , the amount of X-ray energy that attenuated at a rate
within ��j slot.
In the blind scenario where the inspected material and incident signal spectrum are unknown, the above parameterization

allows us to estimate two functions [ι.�/ and ˛.x;y/] rather than three [�."/;�."/, and ˛.x;y/].

MEASUREMENT MODEL AND PARAMETER CONSTRAINTS

Observe that the mass attenuation spectrum ι.�/ and inspected object’s density ˛.x;y/ are nonnegative for all �, x and
y and assume that the shadow of the inspected object is completely covered by the receiver array and that the upper bound
I inmax on incident X-ray energy is known (obtained, e.g., from energy measurements at the detectors that have a line-of-sight
view of the X-ray source); hence,

ι.�/ � 0; ˛.x;y/ � 0 I in � I inMAX: (5)

Upon spatial-domain discretization into p pixels, we replace the line integral
R

` ˛.x;y/d` with �T ˛Z
`

˛.x;y/d` � �T ˛ (6)

where ˛ is a p �1 column vector representing the 2D image that we wish to reconstruct [i.e., discretized ˛.x;y/] and � is
a p �1 vector of weights quantifying how much each element of ˛ contributes to the X-ray attenuation on the straight-line
path `. An X-ray CT scan consists of hundreds of projections with the beam intensity measured by thousands of detectors
for each projection. For the i th measurement, define its discretized line integral as �T

i ˛; stacking all N such integrals into
a vector yields ˆ˛, where ˆ D Œ�1�2 : : :�N �T is the N �p Radon transform matrix for our imaging system.
Express ι.�/ as a linear combination of J basis functions

ι.�/ D b.�/I (7)

where I D ŒI1;I2; : : : ;IJ �T is the J �1 vector of corresponding basis function coefficients and substitute (6) and (7) into
(4) for each of the N measurements, which yields the following expressions for the incident energy and the N � 1 vector
of noiseless measurements:

I in.I/ D bL.0/I; Iout.˛;I/ D bLı.ˆ˛/I: (8)

Here, we select the row vector function b.�/ D
�
b1.�/;b2.�/; : : : ;bJ .�/

�
as B-splines [8] of order one (termed B1 splines,

illustrated in Fig. 2a) because, in this case, the decomposition (7) yields nonnegative elements of the spline coefficients I
[based on (5)] and thus allows us to impose the physically meaningful nonnegativity constraint when estimating I . Note
that bLı.ˆ˛/ is an N � J matrix. In this paper, we adopt a geometric series with common ratio q > 1 as the knots of our
B1 splines:

bj .�/ D

˚
� �qj �1�0

.q �1/qj �1�0
; qj �1�0 � � < qj �0

�� Cqj C1�0

.q �1/qj �0
; qj �0 � � < qj C1�0

0; otherwise

(9)



so that the j th basis function can be obtained simply by q-scaling the .j �1/th basis function (as illustrated in Fig. 2a):

bj .�/ D bj �1

�
�

q

�
; q > 1: (10)

Ambiguity of the density map and mass attenuation spectrum.We now discuss density map scaling ambiguity under
the blind scenario where both the density map ˛.x;y/ and incident spectrum parameters I are unknown. By noting (10)

and the ‘time scaling’ property of the Laplace transform, b
�
�=q

� L
! qbL.qs/ for q > 0, we conclude that selecting q

times narrower basis functions
�
b0.�/;b1.�/; : : : ;bJ �1.�/

�
than those in b.�/ and q times larger density map and spectral

parameters [q˛.x;y/ and qI] yields the same output photon energy Iout.
Linear inequality constraints on I . Combining the nonnegativity of the elements of I and the incident-energy upper

bound constraint bL.0/I � I inMAX [see (5)] yields

CI � c; C ,
"

IJ �

�
bL.0/

�T
kbL.0/k2

#T

; c ,
"

0T
J �

I inmax
kbL.0/k2

#T

: (11)

The rows of C are normalized, for numerical stability.

PARAMETER ESTIMATION

Consider an N �1 vector E of energy measurements corrupted by lognormal noise and the corresponding squared-error
cost function [see (8)]:

L.ˆ˛;I/ D
1

2

lnı.E/� lnı

�
Iout.˛;I/

�2

2
(12a)

Note that (12a) is bi-convex [9] with respect to ˛ and I respectively under the following sufficient condition:

�
2q2

.q2 �1/2
1 � lnı

�
Iout.˛;I/

�
� lnıE � 1 (12b)

where the inequalities on the left and right sides are for the convexity over ˛ and I , respectively.
We formulate the following constrained penalized optimization problem:

min
˛;I

CI�c

L.ˆ˛;I/Cur.˛/ (13a)

where u > 0 is a scalar tuning constant and the regularization term

r.˛/ D k‰T ˛k1 CIC.˛/ (13b)

enforces nonnegativity [based on (5)] and sparsity (in the wavelet-transform domain) of the signal ˛, with sparsifying
transform matrix ‰T that satisfies

‰‰T
D Ip: (14)

In this paper, we use the full circular mask in [3] and select ‰ accordingly as a submatrix of the inverse discrete wavelet
transform (DWT) matrix [3].
Our goal is to estimate the image and incident energy density parameters .˛;I/. We descend the objective function (13a)

by alternating between Step 1) and Step 2), where Iteration i C1 proceeds as follows:

Step 1) Nesterov’s proximal-gradient (NPG) step [10] for ˛ with fixed I D I.i/, yielding ˛.iC1/,
Step 2) if the right side hand of condition (12b) holds, use the active-set (AS) step [11, Ch. 5.2] for I with fixed

˛ D ˛.iC1/ to yield I.iC1/, otherwise let I.iC1/
D I.i/.



Iterate between Steps 1) and 2) until convergence; we select the following convergence criterion:

max
˚
ı

.i/
˛ ; ı

.i/
I
	

< � (15a)

where � is the convergence threshold and

ı
.i/
˛ ,

k˛.i/ �˛.i�1/k2

k˛.i/k2

; ı
.i/
I ,

kI.i/
�I.i�1/

k2

kI.i/
k2

: (15b)

The above iteration is the first physical-model based image reconstruction method (in addition to [6, 7]) for simultaneous
blind (assuming unknown incident X-ray spectrum and unknown materials) sparse image reconstruction from polychro-
matic measurements. In [6, 7], we applied a piecewise-constant (B0 spline) expansion of the mass attenuation spectrum,
approximated Laplace integrals with Riemann sums, and used a smooth approximation of both the `1 and nonnegativity
penalties in (13b), see also [12] for the `1 norm smoothing. Here, we use B1 splines, evaluate the Laplace integrals exactly,
and employ the exact `1 norm instead of its approximation, thus eliminating one tuning constant and improving the recon-
struction performance compared with [6, 7]. Unlike [6, 7], we impose the nonnegativity constraint on the density map ˛
directly and hence eliminate one more tuning constant compared with the methods in these references.
Step 2) aims at minimizing the squared-error cost function L.ˆ˛.iC1/;I/ with respect to I subject to the linear

inequality constraints (11). [Note that the regularization term in (13a) is constant with respect toI , and is thus omitted in our
optimization problem.] Here, we apply the gradient-projection active-set method to perform this optimization, described
in detail in [11].
We initialize the above algorithm by

˛.�1/
D y̨FBP and I.0/

j D

(
I inmax=bLj .0/; j D bJ=2cC1

0; otherwise
(16)

where y̨FBP is the standard FBP reconstruction (without linearization [5, Ch. 3], see also the numerical examples). Plugging
in the initialization (16) into (8), we have I in.I.�1// D I inmax and the initial estimate .˛.�1/;I.0// corresponds to the
monochromatic X-ray model with only one spectrum component. It is also desirable to have the main lobe of the estimated
spectrum at the center, which is why the nonzero element of I.0/ is placed in the middle position.

Step 1) in Iteration i C1: Updating ˛ Using NPG with Restart

Step 1) aims at minimizing l.i/.˛/Cur.˛/ with respect to ˛, where

l.i/.˛/ , L.ˆ˛;I.i// (17)

with gradient rl.i/.˛/ D ˆT diag
h�

.�b/Lı.ˆ˛/
�
I
i
diag�1

�
Iout.˛;I.i//

��
lnı.E/ � lnı

�
Iout.˛;I.i//

��
. Here,

.�b/Lı.ˆ˛/ is an N �J matrix. We implement Step 1) via the NPG scheme [13]:

� .iC1/
D

1

2

�
1C

q
1C4

�
� .i/

�2� (18a)

x̨
.iC1/

D ˛.i/
C

� .i/ �1

� .iC1/

�
˛.i/

�˛.i�1/
�

(18b)

˛.iC1/
D proxˇ .i/ur

�
x̨

.iC1/
�ˇ.i/

rl.i/
�
x̨

.iC1/
��

(18c)

where
prox�r .a/ D argmin

˛

1

2
k˛�ak

2
2 C�r.˛/ (19)

is the proximal operator for scaled (by � > 0) regularization term (13b) [14]. We select the step size ˇ.i/ to satisfy the
majorization condition:

l.i/.˛.iC1// � l.i/.x̨
.iC1//C

�
˛.iC1/

� x̨
.iC1/

�T
rl.i/

�
x̨

.iC1/
�
C

1

2ˇ.i/

˛.iC1/
� x̨

.iC1/
2

2
(20)



using the following adaptation scheme [15]:

a) In Iteration i : if there has been no step size reductions for n consecutive iterations (implying i > n), i.e., ˇ.i�1/ D

ˇ.i�2/ D �� � D ˇ.i�n�1/, start with a larger step size ˇ.i/ D ˇ.i�1/=� , � 2 .0;1/; otherwise start with the previous
step size ˇ.i/ D ˇ.i�1/.

b) Backtrack using the same multiplicative scaling constant � , with goal to find the largest ˇ.i/ that satisfies (20).

We select the initial step size ˇ.0/ using the Barzilai-Borwein method [16].
(Re)start.We initialize the NPG step (18) as follows and [13, 17]:

� .0/
D 0; ˛.0/

D 0 (21a)

which implies that x̨.1/ D ˛.�1/ [see (16)] and leads to two consecutive proximal-gradient (PG) steps:

˛.1/
D proxˇ .0/ur

�
˛.�1/

�ˇ.0/
rl.0/

�
˛.�1/

��
and ˛.2/

D proxˇ .1/ur

�
˛.1/

�ˇ.1/
rl.1/

�
˛.1/

��
(21b)

ensuring the monotonicity of our initial iterates: l.0/.˛.1// � l.0/.˛.�1// and l.1/.˛.2// � l.1/.˛.1// [13]. Here, ˛.0/ is
needed solely for determining the convergence criterion of the corresponding inner proximal-mapping iteration, discussed
in the following section.
Direct NPG iteration is not guaranteed to decrease monotonically the objective function that it minimizes due to the

momentum term, see examples in [18]. O’Donoghue and Candès [18] restart the acceleration scheme by resetting the
momentum term to zero and take the current ˛.i/ as the new initial value for the acceleration scheme. Here we adopt the
function restart version in [18], i.e., restart the NPG iteration steps where the objective function (17) increases. Suppose
that the objective function increase occurs at the i th iteration; then, the restart is equivalent to setting � .i/ D 0, consistent
with (21a) where 0 is replaced by i .

Proximal Mapping

Rewrite the objective function in (19) as min
˛;z

˛Dz

1
2 k˛�ak

2
2 C IC.˛/ C �k‰T zk1, which leads to the following (inner)

alternating direction method of multipliers (ADMM) iteration:

z.kC1/
D ‰T�=�

�
‰T .˛.k/

��.k//
�

(22a)

˛.kC1/
D

1

1C�

�
a C�.z.kC1/

C�.k//
�
C

(22b)

�.kC1/
D �.k/

Cz.kC1/
�˛.kC1/ (22c)

where k � 0 indexes the (inner) iteration steps and � > 0 is a quadratic penalty parameter, usually set to one [19, Sec. 3.4].
Here, the orthonormality of the rows of the transform matrix ‰ (14) is needed to derive (22). If (14) does not hold, (22) can
be replaced by linearizedADMM [14, Ch. 4.4.2].We initialize the above iterations using˛.0/ D .a/C and�.0/ D a�.a/C.
Convergence criterion. Denote by i and k the outer and inner iteration indices corresponding to the NPG and ADMM

iterations, respectively, and by ˛.i;k/ and z.i;k/ the iterates of ˛ and z in the kth (inner) ADMM iteration step within the
i th step of the (outer) NPG iteration (18). We set the following convergence criterion for the inner iteration:

max

(
kz.i;k/ �z.i;k�1/k2

kz.i;k/k2

;
k˛.i;k/ �˛.i;k�1/k2

k˛.i;k/k2

)
< �ı

.i�1/
˛ ; i � 1 (23)

where the tuning constant 0 < � < 1 trades the accuracy and speed of the inner iteration, with goal to provide sufficiently ac-
curate PG steps (18c), see also (15b). Once (23) holds for some indexKi � 1, the ADMM algorithm returns ˛.i/ , ˛.i;Ki /.

NUMERICAL EXAMPLES

We construct a simulation example using the binary 1024�1024 image in Fig. 2b (denoted ˛true) as the ‘ground truth’;
here, the inspected object contains irregularly shaped inclusions. We simulated the polychromatic sinogram using the
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FIGURE 2. (a) B1-spline approximation of ι.�/, (b) ‘ground truth’ image used to generate the sinogram, and (c) mass attenuation
and incident X-ray spectrum as functions of the photon energy ".

interpolated mass attenuation of iron for the inspected object [20] and incident spectrum in Fig. 2c:

�."/ D

˚
Gamma

�
4."�20/

25

ˇ̌̌
5;1

�
; 20 � " � 150

0; otherwise
(24)

where Gamma.x j ˛;ˇ/ denotes the Gamma probability density function [21, Sec. 3.3]. Our simulated approximation
of the integral (2b) uses 130 equi-spaced discretization points over the range 20 keV to 150 keV. We construct the Radon
transform matrix ˆ directly on GPU (multi-thread version on CPU is also available) with full circular mask [3]. For each
of the 180 projections, we obtain the measurements from an energy detector array of size 1024 and reconstruct images of
size 1024�1024.
Linearization. Observe that Iout in (2b) and (4) is a decreasing function of the line integral

R
` ˛.x;y/d`, which is a

key insight behind various linearization methods popular in the literature and practice, see [4, Sec. 6]. If we know exactly
the incident spectrum and mass attenuation (material), we can determine the mass attenuation spectrum ι.�/ and its Laplace
transform ιL.s/ exactly as well. Here, we refer to applying the inverse function of ιL.s/ to the elements of the noisymeasure-
ment vector E as linearization. However, such a zero-forcing approach to reconstruction ignores noise and therefore leads
to noise enhancement. In this example, we use noiseless measurements, i.e., .ιL/�1

ı .E/ D ˆ˛ and the linear reconstruction
methods with linearization are equivalent to these methods applied directly to noiseless linear measurements ˆ˛.
We compare

• the traditional FBP method without [5, Ch. 3] and with linearization [22], i.e., based on the ‘data’

y D � lnı.E/ (without linearization) and y D
�
ιL
��1

ı
.E/ (with linearization) (25)

respectively,
• the fixed-point continuation active set (FPCAS) methods [23] without and with linearization [see (25)], which solve
the synthesis basis pursuit denoising (BPDN) problem [24]:

min
s

1

2
ky �ˆ‰sk

2
2 Cu0

ksk1 (26)

and obtain the signal estimates as y̨ D ‰s.C1/, where s.C1/ is the vector of the transform signal coefficients obtained
upon convergence;

• our [Matlab implementation available at https://github.com/isucsp/npg]
– NPG-AS alternating descent method with step adaptation parameters n, � and regularization constant u chosen as

n D 4; � D 0:5; u D 10aqJ=2
k‰T ˆT lnı.E=I inmax/k1 (27)

where a is tuned in the set f�1;�2;�3;�4;�5;�6;�7;�8;�9g for good reconstruction performance in terms
of relative square error (RSE) [defined in (31)] for each number of projections,

– NPG for known mass attenuation spectrum ι.�/ that iterates Step 1) only and uses the exact sampled ι.�/ as I
and the step adaptation parameters in (27).
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• linearized NPG [15], which aims at solving

min
˛

1

2
ky �ˆ˛k

2
2 Cu00r.˛/ (28)

where y are the linearized measurements in (25) and the penalty r.˛/ has been defined in (13b).

The regularization tuning constants u0 and u00 for sparse regularization terms of FPCAS and linearized NPG have the
form 10ak‰T ˆT yk1, where a is tuned for good reconstruction performance in terms of RSE. Before applying the
reconstruction algorithms, we normalize the energy measurements by their largest value and set I inmax D 1. We initialize
iterative reconstruction methods with or without linearization using corresponding FBP reconstructions. NPG-AS employs
the convergence criterion in (15a) with convergence threshold

� D 10�6 (29)

FPCAS runs on its default options and all other iterative methods use the relative change of ˛ between two consecutive
steps as the convergence criterion:

ı
.i/
˛ < � (30)

with the convergence threshold � in (29). The maximum number of iterations is M D 2000 for all iterative methods.
For NPG-AS and NPG, we set J D 17 and qJ D 103 to ensure sufficiently wide coverage of the spline basis. Note that

(12a) is convex with respect to ˛ under condition (12b).
Our reconstruction performance metric for an estimator y̨ is the RSE:

RSEfy̨g D 1�

 
y̨

T ˛true

ky̨k2k˛truek2

!2

(31)

which is invariant to scaling y̨ by a nonzero constant.
In Fig. 3a, we show the centered objective as a function of the iteration index i for NPG-AS from 180 parallel projections.

Note that f .˛;I/ D L.ˆ˛;I/Cur.˛/ and f ? is its minimum value when optimized with respect to ˛ and I .
Figure 3b shows RSEs as functions of the number of equally spaced parallel projections for various methods. RSEs of

the methods that do not assume knowledge of the mass attenuation spectrum ι.�/ are shown using solid lines whereas
dashed lines represent methods that assume known ι.�/ [i.e., known incident spectrum of the X-ray machine and mass
attenuation (material)] are shown using dashed lines. Among the methods that do not assume knowledge of ι.�/, FBP and
FPCAS ignore the polychromatic source effects whereas NPG-AS blindly corrects for the polychromatic effects.
The same line color is used to present the same general methods, e.g., FBP and linearized FBP, FPCAS and linearized

FPCAS, and NPG-AS, NPG, and linearized NPG. FBP and FPCAS ignore the polychromatic nature of the measurements
and consequently perform poorly and do not improve as the number of projections increases. Linearized FBP, FPCAS,
and NPG, which assume perfect knowledge of the mass attenuation spectrum, perform much better than FBP and FPCAS.
Linearized FPCAS, which imposes signal sparsity, is up to 5 times better in RSE than linearized FBP, demonstrating the
importance of enforcing signal sparsity. NPG and linearized NPG, which impose both signal sparsity and nonnegativity,



RSE=10.85%

(a) FBP

RSE=9.38%

(b) FPCAS

RSE=0.89%

(c) NPG-AS

RSE=6.47%

(d) linearized FBP
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(e) linearized FPCAS

RSE=0.86%

(f) NPG, linearized NPG

FIGURE 4. Reconstructions from 40 equally spaced parallel projections (a)–(c) without and (d)–(f) with prior knowledge of the
X-ray spectrum and the inspected material.

outperform linearized FPCAS, particularly as the number of projections increases. The RSEs are cut two or more times by
imposing the signal nonnegativity constraints.
The blind NPG-AS method is competitive with NPG and linearized NPG, indicating that good reconstruction is possible

even without the information of mass attenuation spectrum ι.�/. Note that these three methods reach almost perfect
reconstructions from 180 parallel-beam projections. In this example, linearized NPG is the best-performing method overall;
however, we expect it to be sensitive to noise due to the zero-forcing nature of linearization.
Figure 4 shows reconstructions from 40 equally spaced parallel projections. The reconstructions in Figs. 4a–4c corre-

spond to methods that to not have knowledge of the incident spectrum and material. FBP exhibits aliasing, due to the small
number of projections, and beam hardening artifacts, including cupping and streaking artifacts. FPCAS provides a smooth
reconstruction and removes aliasing thanks to the fact that it imposes image sparsity in the DWT domain, but clearly can-
not cope with the beam hardening effects because it is based on the linear model that ignores the nonlinearities due to the
polychromatic source. The NPG-AS method accounts for the signal sparsity, nonnegativity, and, most importantly, uses
the correct polychromatic model, which leads to over 10 times smaller RSE than those of FBP and FPCAS.
Figures 4d-4f show the reconstructions with known incident spectrum and material [i.e., known ι.�/]. By comparing

linearized FPCAS, linearized FBP, and (linearized) NPG, we observe the improvements brought by signal sparsity and
nonnegativity constraints, respectively.

CONCLUSION

Future work will include the adaptation of the number and positions of B1-spline knots used for modeling the mass
attenuation spectrum and accounting for characteristic lines in the incident spectrum. We will also adapt the proposed
approach to the Poisson measurements model, useful in low-dose scenarios, which are of great practical interest in
biomedical applications [4].
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