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Abstract—We develop a projected Nesterov’s proximal-
gradient (PNPG) scheme for reconstructing sparse signals from
compressive Poisson-distributed measurements with the mean
signal intensity that follows an affine model with known intercept.
The objective function to be minimized is a sum of convex
data fidelity (negative log-likelihood (NLL)) and regularization
terms. We apply sparse signal regularization where the signal
belongs to a closed convex set within the domain of the NLL and
signal sparsity is imposed using total-variation (TV) penalty. We
present analytical upper bounds on the regularization tuning con-
stant. The proposed PNPG method employs projected Nesterov’s
acceleration step, function restart, and an adaptive step-size
selection scheme that aims at obtaining a good local majorizing
function of the NLL and reducing the time spent backtracking.
We establish O

�
k�2

�
convergence of the PNPG method with

step-size backtracking only and no restart. Numerical examples
demonstrate the performance of the PNPG method.

I . I N T R O D U C T I O N

Signal reconstruction from Poisson-distributed measure-
ments with affine model for the mean signal intensity is
important for tomographic, astronomic, optical, microscopic,
and hyperspectral imaging [1–4]; it corresponds to the Poisson
generalized linear model (GLM) with identity link function
[5, Sec. I-A]. In this paper, we propose a projected Nesterov’s
proximal-gradient (PNPG) method for sparse signal reconstruc-
tion under this measurement scenario.

We now illustrate the physics behind the measurement model
using a positron emission tomography (PET) example. In PET,
antipodal detectors placed on rings count photons that arrive
simultaneously and are generated when a positron-electron
pair annihilates [1]. The received photon numbers are well
modeled using Poisson distribution with the mean equal to the
corresponding linear projection of the concentration map of a
radioactive material, plus an intercept term corresponding to
background radiation, scattering effect, accidental coincidence
and various other physical effects. Maximum-likelihood (ML)
estimation for this problem was first addressed in [6] using
the expectation-maximization (EM) algorithm, see also [4]
and references therein for EM-algorithm acceleration. Since
then, various regularization terms have been added to this
signal reconstruction model, including the nonnegativity and
total-variation (TV)-norm regularization on the signal and `1-
norm regularization on the signal coefficients in a transform
domain [7]. The sparse Poisson-intensity reconstruction algo-
rithm (SPIRAL) [7, 8] approximates the logarithm function
in the underlying negative log-likelihood (NLL) by adding a
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small positive term to it and descends the objective function
(regularized NLL) with proximal steps that employ Barzilai-
Borwein (BB) [9] step size in each iteration, followed by
backtracking. In this paper, we do not approximate the NLL
and propose a projected Nesterov acceleration of the proximal
iteration, with restart and adaptive step size.

We introduce the notation: “T ”, 0 and 1 denote the transpose,
vectors of zeros and ones, respectively; “�” and “�” are
the elementwise versions of “�” and “>”. For a vector
a D Œa1; : : : ; aN �

T 2 RN , define the indicator function,
projection operator, nonnegativity projector:

IC .a/ D
(
0; a 2 C
C1; otherwise

(1a)

PC .a/ D arg min
x2C
kx � ak22 (1b)�

.a/C
�
i
D max.ai ; 0/ (1c)

and the elementwise logarithm and exponential Œlnı a�i D ln ai
and

�
expı a

�
i
D eai . We define the proximal operator for

function r.x/ scaled by �:

prox�r a D arg min
x

1
2
kx � ak22 C �r.x/: (2)

I I . M E A S U R E M E N T M O D E L

Consider N independent measurements y D .yn/
N
nD1 that

follow the Poisson distribution with means Œˆx C b�n, where
x D .xi /piD1 2 C is the unknown p � 1 signal vector that we
wish to reconstruct and ˆ D Œ�1 �2 � � ��N �T 2 RN�pC , b, and
C are the known sensing matrix, intercept term, and nonempty
closed convex set that x belongs to, respectively; the intercept
b models background radiation and scattering determined, e.g.,
by calibration before the measurements y have been collected.
Upon ignoring constant terms, we obtain the NLL function

L.x/ D 1T .ˆx C b � y/C
NX
nD1

yn ln
�

yn

�Tn x C bn

�
(3)

in the form of generalized Kullback-Leibler (KL) divergence
[10]. The NLL L.x/ W Rp 7! RC is a convex function of the
signal x. Assume

C � domL.x/ (4)

which ensures that L.x/ is computable for all x 2 C ; here,

domL.x/ D
˚
x 2 Rp

ˇ̌̌̌
ˇ�Tn x C bn � 0 for yn D 0
�Tn x C bn > 0 for yn > 0

;8n
	

.
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Nonnegativity signal constraint. In practice, x represents
signal density or concentration, which are nonnegative quanti-
ties; hence x 2 RpC. The selection

C D RpC (5a)

satisfies (4) when b � 0; here,

PC .a/ D PRC.a/ D .a/C: (5b)

We adopt the unconstrained regularization framework and
minimize

f .x/ D L.x/C ur.x/ (6a)

where u > 0 is a scalar tuning constant and

r.x/ D TV.x/C IC .x/ (6b)

is the regularization term that imposes the TV-domain sparsity
and convex-set constraints [11], TV.x/ 2 fTViso.x/;TVani.x/g,

TViso.x/ D
pX
iD1

sX
j2Ni

.xi � xj /2 (7a)

TVani.x/ D
pX
iD1

X
j2Ni

jxi � xj j (7b)

are isotropic and anisotropic TV penalties, and Ni is an index
set of appropriately chosen neighbors of xi . For images, each
set Ni consists of two pixels at most, with one below and the
other on the right of the i th pixel, if possible [11].

For sufficiently large regularization tuning parameter u, the
minimum point

x? D arg min
x
f .x/ (8)

reduces to the constant signal 1x?0 because TV.1x0/ D 0 for
any x0; here, the optimal constant signal level

x?0 D arg min
x0

f .1x0/ D arg min
x0

1x02C
L.1x0/ (9)

is not a function of u. For nonnegative C in (5a), x?0 D�
arg minx0

L.1x0/
�
C. In the following, we find bounds U on

u beyond which x? D 1x?0 ; these bounds apply to general
convex differentiable NLLs.

A. Upper-bounding the regularization constant u

Theorem 1: Consider reconstructing an image X 2 RI�J by
minimizing the penalized NLL (6a) for convex and differen-
tiable NLL L.x/ and penalty r.x/ in (6b), where x D vecX .
Then, the minimum point x? in (8) is a constant image
x? D 1x?0 if

u � U (10)

where

U D
(
U0; TV.x/ D TVani.x/p
2U0; TV.x/ D TViso.x/

(11a)

U0 D 1

2.I C J � 2/ max
h
max
i<I

ˇ̌
wi;j .G/

ˇ̌
;max
j<J

ˇ̌
wj;i

�
GT

�ˇ̌i
(11b)

101

102

103

104

105

106

107

108

104 105 106 107 108 109

u

expected total photon count

p
2U0
U0

empirical Uiso
empirical Uani

Figure 1: Analytical and empirical upper bounds on u as
functions of the total expected photon count 1Tˆx.

and G D vec�1
�rL.1x?0 /� is an I � J matrix. Here,

wk;`.Z/ D .2k � 1/hIZ ;`.Z/ � 2.IZ � 1/hk;`.Z/

� �1`>1C 1`<JZ

� JZX
jD1

hk;j .Z/ (12a)

hk;`.Z/ D
kX
iD1

zi;` D
IZX
iD1

JZX
jD1

zi;j 1k�i�0;`�jD0 (12b)

where Z D .zi;j / is an IZ � JZ matrix, hk;`.�/ is a partial
sum of elements of the `th column of Z from the top to the

kth entry, and 1A D
(
1; A true
0; A false

.

Proof: See [12].
For 1D signal where (7a) and (7b) coincide and the number

of columns in X is J D 1, U in (10) becomes U D
maxk

�ˇ̌̌Pk
iD1

�rL�1x?0 ��i ˇ̌̌�.
Fig. 1 shows the analytical bounds U in (11a) and the

empirical upper bounds on u (beyond which x? is a constant
image) as functions of signal-to-noise ratio (SNR) for one noise
realization under the measurement scenario in Section IV. Our
analytical bounds follow the trends of the empirical bounds
well, where the analytical bounds are 4.5 to 6.1 larger than the
empirical bounds.

I I I . R E C O N S T R U C T I O N

We propose a PNPG approach for minimizing (6a) that
combines convex-set projection with Nesterov acceleration [13,
14] and applies function restart and adaptive step size. The
pseudo code in Algorithm 1 summarizes our PNPG method.

A. PNPG method

Iteration i of the PNPG method proceeds as follows:

� .i/ D 1

2

�
1C

q
1C 4�� .i�1/�2� (13a)

xx.i/ D PC
�
x.i�1/ C �.i�1/�1

�.i/

�
x.i�1/ � x.i�2/�� (13b)

x.i/ D proxˇ .i/ur

�
xx.i/ � ˇ.i/rL�xx.i/�� (13c)
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Algorithm 1: PNPG method

Input: x.�1/, u, n, �, �, and threshold �
Output: arg minx f .x/
Initialization: � .0/  0, x.0/  0, i  0, �  0 and
ˇ.1/ by the BB method
repeat

i  i C 1 and �  � C 1
evaluate (13a) and (13b)
while true do // backtracking search

solve the proximal-mapping step (13c)
if condition (14) holds then

break
else

ˇ.i/  �ˇ.i/ and �  0

if i > 1 and f
�
x.i/

�
> f

�
x.i�1/

�
then // restart

� .i�1/  0, i  i � 1, and continue

if condition (17a) holds with threshold � then
declare convergence

if � � n then // adapt step size

�  0 and ˇ.iC1/  ˇ.i/=�
else

ˇ.iC1/  ˇ.i/

until convergence declared or maximum number of
iterations exceeded

where ˇ.i/ > 0 is an adaptive step size chosen to satisfy the
majorization condition

L
�
x.i/

� � L
�xx.i/�C �x.i/ � xx.i/�TrL�xx.i/�
C 1

2ˇ.i/

x.i/ � xx.i/2
2

(14)

using the following simple adaptation scheme that aims at
keeping ˇ.i/ as large as possible:

i) � if there have been no step-size backtracking events or
increase attempts for n consecutive iterations (i �n to
i � 1), start with a larger step size

x̌.i/ D ˇ.i�1/

�
(increase attempt) (15a)

where � 2 .0; 1/ is a step-size adaptation parameter;
� otherwise start with

x̌.i/ D ˇ.i�1/I (15b)

ii) (backtracking search) select

ˇ.i/ D � ti x̌.i/ (15c)

where ti � 0 is the smallest integer such that (15c)
satisfies the majorization condition (14); backtracking
event corresponds to ti > 0.

We select the initial step size x̌.0/ using the BB method [9].
If there has been an attempt to change the step size in any of

the previous n consecutive iterations, we start the backtracking
search ii) with the step size from the latest completed iteration.
Consequently, the step size will be approximately piecewise-
constant as a function of the iteration index i ; see Fig. 2,
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Figure 2: PNPG step size as a function of the iteration index.

which shows the evolution of the adaptive step size ˇ.i/ for
one realization of the noisy measurements in Section IV. Here,
n controls the size of the neighborhood around xx.i/ over which
L
�xx.i/�C �x � xx.i/�TrL�xx.i/�C 1

2ˇ .i/

x � xx.i/2
2

majorizes
L.x/ and also the time spent backtracking: larger n yields a
larger neighborhood and leads to less backtracking. A step-size
adaptation scheme with n D 0 has been used in [14] for basis
pursuit denoising (BPDN), i.e., Gaussian linear model NLL
and `1-norm penalty; n D 0 means that we always initialize
the step-size search aggresively with an increase attempt (15a).

The majorization condition (14) ensures that the iterate x.i/
attains lower (or equal) objective function than the intermediate
signal xx.i/ [15, Lemma 2.3]:

f
�
x.i/

� � f �xx.i/� � 1

2ˇ.i/

x.i/ � xx.i/2
2
: (16)

However, (16) does not guarantee monotonicity of the PNPG
iteration: we apply the function restart [16] to restore the
monotonicity and improve convergence of the PNPG iteration,
see Algorithm 1.

For the proximal mapping in (13c), we use an inner iteration
with the TV-based denoising method in [11].

Convergence criteria. The outer- and inner-iteration con-
vergence criteria are

ı.i/ ,
x.i/ � x.i�1/

2
< �

x.i/
2

(17a)x.i;j / � x.i;j�1/
2
< �ı.i�1/ (17b)

where � > 0 is the convergence threshold, j is the inner-
iteration index, x.i;j / is the iterate of x in the j th inner
iteration step within the i th step of the (outer) PNPG iteration
(13), and the convergence tuning constant � 2 .0; 1/ is chosen
to trade off the accuracy and speed of the inner iterations and
provide sufficiently accurate solutions to (13c).

The above iteration can be viewed as an accelerated sequence
of iterative denoising steps (13c), where the proximal step
(2) performs denoising of the noisy signal a by imposing
signal constraints through the regularization term �r.x/ and
the convex-set projection in (13b) ensures that L

�xx.i/� and
rL�xx.i/� exist, see also (4).

Nesterov’s acceleration can be removed by replacing (13a)
with the assignment � .i/ D 1, which leads to the proximal-
gradient (PG) iteration with adaptive step size. In this case,
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larger step size ˇ.i/ renders larger ı.i/, which follows easily
from [14, Lemma 2], see also (17a). Consequently, it will be
harder for the PG method with our adaptive step selection to
converge compared with the standard PG method that employs
step-size backtracking only (i.e., n D C1). This trend is
confirmed empirically for our PNPG method as well, compare
PNPG with finite and infinite n in Fig. 4a in Section IV.

We now bound the convergence speed of the PNPG method
with step-size backtracking only (n D C1) and no restart,
which can be thought of as a Poisson compressed-sensing
adaptation of fast iterative shrinkage-thresholding algorithm
(FISTA) [15]. Although PNPG with finite n converges faster
than PNPG with infinite n empirically (see Section IV), it is
not easy to analyze its convergence rate.

Theorem 2 (Convergence of PNPG with n D C1 and no
restart): Assuming n D C1 and no restart, the convergence of
PNPG iterates x.k/ to the minimum point x? in (8) is bounded
as follows:

f
�
x.k/

� � f �x?� � 2
x.0/ � x?2

2

ˇ.k/k2
(18)

for all k � 1.
Proof: Along the lines of [15, Th. 4.4] with adjustment made

to accommodate the convex-set projection in (13b), based on the
nonexpansiveness of the convex projection [17, Th. 9.9].

Theorem 2 applies to general scenarios with continuous and
convex L.x/, as well as convex penalties r.x/.

Here, in contrast with [15], we leave the right-hand side
of (18) as a function of the step size ˇ.k/ instead of further
bounding ˇ.k/ with the Lipschitz constant of L.x/. The reason
is infinite Lipschitz constant of (3) when b D 0.

I V. N U M E R I C A L E X A M P L E S

Relative square error (RSE) is adopted as the main metric
to assess the performance of the compared algorithms:

RSE D kyx � xtruek22
kxtruek22

(19)

where xtrue and yx are the true and reconstructed signal,
respectively.

Consider PET reconstruction of the 128�128 concentration
map x in Fig. 3a, which represents simulated radiotracer activ-
ity in human chest. Assume that the corresponding 128 � 128
attenuation map � is known, given in Fig. 3b, which is needed
to model the attenuation of the gamma rays [1] and compute the
sensing matrix ˆ in this application, see (20) and the following
discussion. We collect the photons from 90 equally spaced
directions over 180ı, with 128 radial samples at each direc-
tion. Here, we adopt the parallel strip-integral matrix � [18,
Ch. 25.2] and use its implementation in the Image Reconstruc-
tion Toolbox (IRT) [19], which leads to the sensing matrix ˆ:

ˆ D w diag
�
expı.���C c/

�
� (20)

where c is a known vector generated using a zero-mean
independent, identically distributed (i.i.d.) Gaussian sequence
with variance 0:3 to model the detector efficiency variation,
and w is a known scaling constant, which we use to control the
expected total number of detected photons, 1T E.y/ D 1Tˆx,

which is an SNR measure. Assume that the background radi-
ation, scattering effect, and accidental coincidence combined
together lead to a known (generally nonzero) intercept term b.
The elements of the intercept term have been set to a constant
equal to 10 % of the sample mean of ˆx: b D 1Tˆx

10N
1.

The above model, choices of parameters in the PET system
setup, and concentration map have been adopted from IRT [19,
emission/em_test_setup.m].

We compare filtered backprojection (FBP) [1] and proximal-
gradient methods that aim at minimizing (6a) with isotropic
TV norm (7a) and nonnegative C in (5a):

(i) PNPG with adaptive step-size parameters n 2 f0; 4;C1g,
� D 0:8, and inner-iteration convergence constant � D
10�3,

(ii) SPIRAL with NLL term (3), which improves its numerical
stability compared with the original code in [8].

The iterative methods use the convergence criterion (17a) with

� D 10�6 (21)

have the maximum number of iterations limited to 104, and
have been initialized by FBP reconstructions implemented in
the IRT [19], see also [1].

The NLL centering via generalized KL divergence in (3)
is critical for numerical stability and avoiding cancellation
errors. Accordingly, we have also incorporated this NLL into
the SPIRAL code. In particular, we have replaced the Poisson
NLL in the SPIRAL paper and code [7, 8] with the generalized
KL form (3), which is also slightly more general than the
NLL in [7] because it allows for the nonzero intercept term b;
we keep the small additive constant in logarithm calculations.
We observed that the original SPIRAL fails to converge at
larger SNRs whereas our modified SPIRAL code converges
successfully in these cases. The Matlab implementation of
the PNPG and SPIRAL methods and numerical examples is
available at https://github.com/isucsp/imgRecSrc.

We adopt the following form of the regularization constant u:

u D 10a (22)

vary a in the range Œ�6; 3� over a grid with spacing 0.5, and
seek reconstructions with the smallest RSEs.

Figs. 3c and 3d show reconstructions for one random
realization of the noise and detector variation c, with the
expected total annihilation photon count equal to 108 and
regularization constant a optimized for RSE performance. The
optimal a is 0.5 for both PNPG and SPIRAL. PNPG and
SPIRAL perform similarly and clearly outperform FBP; here,
PNPG is 3 times faster than SPIRAL.

Fig. 4 shows the evolutions of the centered objectives
f .x/ � fMIN as functions of CPU time and iteration index
for the reconstructions in Fig. 3; here fMIN D minx f .x/.
We run PNPG .n D1/ and SPIRAL past convergence points
to illustrate their convergence rates; these convergence points
for the threshold in (21) are labeled using arrows. PNPG
.n D 4/ meets the convergence criterion (21) twice faster
than PNPG .n D1/ and 3 times faster than SPIRAL, and
reaches lower objective function than these competitors. The
advantage of PNPG .n D 4/ over PNPG .n D1/ is due
to its use of step-size adaptation, see also Fig. 2 where
the step size of PNPG .n D 4/ is consistently larger than
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(a) radio-isotope concentration (b) attenuation map

RSE=3.09 %

(c) FBP
RSE=0.25 %

(d) SPIRAL

RSE=0.23 %

(e) PNPG (n D 4)

Figure 3: (a) True emission concentration map, (b) density map, and (c)–(e) reconstructions of the emission concentration map.
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Figure 4: Centered objective functions as functions of (a) the CPU time and (b) number of iterations.

that of PNPG .n D1/. Indeed, PNPG .n D1/ does not
adapt to the local curvature of the NLL. The advantage of
PNPG .n D 4/ over PNPG .n D 0/ is due to the patient
nature of its step-size adaptation, which leads to better local
majorizing function of the NLL and reduced time spent
backtracking compared with the aggressive PNPG .n D 0/
scheme. Fig. 4b presents the centered objectives as functions
of the iteration index and hence does not account for time spent
backtracking: PNPG .n D 4/ remains superior and converges
in fewer iterations than PNPG .n D 0/.

Fig. 5 shows the minimum average (over 15 random re-
alizations of the noise and detector variation c) RSEs and
CPU times as functions of the expected total photon counts
1Tˆx 2 ˚104; 105; : : : ; 108	, where a has been selected to

minimize the average RSE for each method at each expected
total photon count. For both PNPG and SPIRAL the optimal
a increases with the SNR: �0:5 for 1T E.y/ 2 ˚104; 105	,
0 for 1T E.y/ 2 ˚106; 107	, 0:5 for 1T E.y/ D 108, and 1
for 1T E.y/ D 109. As the expected total annihilation photon
count increases in Fig. 5a, FBP reaches a performance floor
whereas PNPG and SPIRAL continue to improve thanks to the
signal sparsity and nonnegativity constraints that they employ.
As the SNR increases, the convergence points of SPIRAL and
PNPG diverge, which explains the difference between RSEs
of the two methods at large SNRs in Fig. 5a. This trend is
observed already in Fig. 4a where 1T E.y/ D 108.

Fig. 5b shows average CPU times as functions of SNR.
For the same convergence threshold (21), PNPG is 3 to 30
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Figure 5: (a) Minimum average RSEs and (b) corresponding average CPU times as functions of the expected total photon counts.

times faster than SPIRAL, where the gap between the two
methods is particularly large in the practically important low-
SNR scenario.

V. C O N C L U S I O N

We developed a framework for penalized NLL minimization
where the signal that we wish to reconstruct belongs to a
nonempty closed convex set within the domain of the NLL: we
employ a proximal-gradient scheme with projected Nesterov’s
acceleration, function restart, and patient adaptive step size
selection. We applied the proposed framework to reconstruct
sparse signals from measurements that follow Poisson GLM
with identity link and known intercept term. Our PNPG
approach is computationally efficient compared with the state-
of-the-art SPIRAL method.

Future work includes automating the selection of the regu-
larization parameter u.
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